Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs
نویسندگان
چکیده
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10-9 fs2/Hz (equivalent to -174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.
منابع مشابه
Fiber-laser frequency combs with subhertz relative linewidths.
We investigate the comb linewidths of self-referenced, fiber-laser-based frequency combs by measuring the heterodyne beat signal between two independent frequency combs that are phase locked to a common cw optical reference. We demonstrate that the optical comb lines can exhibit instrument-limited, subhertz relative linewidths across the comb spectra from 1200 to 1720 nm with a residual integra...
متن کاملTime-domain spectroscopy of molecular free-induction decay in the infrared.
Time-domain spectroscopy using dual, coherent frequency combs is used to measure free-induction decay from a molecular gas sample in the near-IR with a time-domain signal-to-noise ratio of approximately 10(6) over a approximately 6 ns window at 55 fs time resolution (corresponding to the 9 THz source bandwidth) and a frequency/timing accuracy set by the frequency combs. The free-induction decay...
متن کاملComputational multiheterodyne spectroscopy
Dual-comb spectroscopy allows for high-resolution spectra to be measured over broad bandwidths, but an essential requirement for coherent integration is the availability of a phase reference. Usually, this means that the combs' phase and timing errors must be measured and either minimized by stabilization or removed by correction, limiting the technique's applicability. We demonstrate that it i...
متن کاملCharacterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency.
We demonstrate a method that enables accurate timing jitter spectral-density characterization of free-running mode-locked laser oscillators over more than 10 decades of Fourier frequency from mHz to tens of MHz range. The method is based on analyzing both the input voltage noise to the slave laser and the output voltage noise from the balanced optical cross-correlator (BOC), when two mode-locke...
متن کاملQuantum dot based mode locked lasers for optical frequency combs. (Lasers à blocage de modes à base de boîtes et bâtonnets quantiques pour les peignes de fréquences optiques)
Optical frequency combs, generating tens of equally spaced optical carriers from a single laser source, are very attractive for next-generation wavelength division multiplexing (WDM) communication systems. This PhD thesis presents a study on the optical frequency combs generated by mode-locked laser diodes based on low-dimensional semiconductor nanostructures. In this work, the mode-locking per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017